Given : 8x+1=16y+2
⇒ (23)x+1=(24)y+2
⇒ 23x+3=24y+8 {∵(am)n=am× n}
On comparing both the sides, we get
⇒ 3x+3=4y+8
⇒ 3x−4y=5 ........(i)
Also, (12)3+x=(14)3y
⇒ 123+x=1(22)3y {∵ (1a)m=1am}
⇒ 23+x=26y
On comparing both the sides, we get
3+x=6y
x=6y−3 ......(ii)
Putting value of x in equation (i) we get,
3(6y−3)−4y=5
⇒ 18y−9−4y=5
⇒ 14y=14
⇒ y=1
Putting value of y in equation (ii) we get,
x=6×1−3
⇒ x=3
Hence, x=3 and y=1