Solve the following equations:
√x2+ax−1−√x2+bx−1=√a−√b.
√x2+ax−1−√x2+bx−1=√a−√b ........(i)
√x2+ax−1−√x2+bx−1×√x2+ax−1+√x2+bx−1√x2+ax−1+√x2+bx−1=√a−√b×√a+√b√a+√bx2+ax−1−x2−bx+1√x2+ax−1+√x2+bx−1=a−b√a+√b(a−b)x√x2+ax−1+√x2+bx−1=a−b√a+√b(√a+√b)x=√x2+ax−1+√x2+bx−1
Squaring both sides, we get
(a+b+2√a√b)x2=x2+ax−1+x2+bx−1+2√x2+ax−1√x2+bx−1 ......(ii)
Squaring (i)
a+b−2√a√b=x2+ax−1+x2+bx−1−2√x2+ax−1√x2+bx−1 .........(iii)
Adding (ii) and (iii)
(a+b+2√a√b)x2+a+b−2√a√b=4x2+2(a+b)x−4
⇒(4−(√a+√b)2)x2+2(a+b)x−(4+(√a−√b)2)=0 ......(iv)
But (4+(√a−√b)2)−(4−(√a+√b)2)=2(a+b)
Substituting in (iv), we have
(4−(√a+√b)2)x2+(4+(√a−√b)2)x−(4−(√a+√b)2)x−(4+(√a−√b)2)=0⇒(4−(√a+√b)2)x(x−1)+(4+(√a−√b)2)(x−1)=0⇒x=1,(√a−√b)2+4(√a+√b)2−4