√x2+x+√x−1√x3−x=52√x2+x+√x−1√x(x2−1)=52√x2+x+√x−1√x(x−1)(x+1)=52√x2+x+1√x2+x=52
Put √x2+x=t
t+1t=52t2+1t=522t2−5t+2=02t2−4t−t+2=02t(t−2)−1(t−2)=0(2t−1)(t−2)=0t=12,2
x2+x=t2x2+x=(12)24x2+4x−1=0........(i)
using quadratic formula
x=−4±√16−4(4)(−1)2(4)=−4±√328x=−4±4√28=−1±√22
Also x2+x=22
x2+x−4=0......(ii)
using quadratic formula
x=−1±√1−4(−4)2=−1±√172
So the values of x are −1±√22 and −1±√172