Solve the following equations:
x2+xy+xz=18,
y2+yz+yz+12=0
z2+zx+zy=30.
x2+xy+yz=18
⇒x(x+y+z)=18 ........(i)
y2+yz+yx+12=0
⇒y(x+y+z)=−12 .......(ii)
z2+zx+zy=30
⇒z(x+y+z)=30 ........(iii)
Dividing (i) by (ii)
⇒xy=−1812=−32
y=−23x .......(a)
Dividing (i) by(iii)
xz=1830=35
z=53x ...........(b)
Substituting (a) and (b) in (i)
x(x−23x+53x)=18
⇒6x23=18
⇒x2=9⇒x=±3
Substituting x in (a), we get
⇒y=−23(±3)=∓2
Substituting x in (b), we get
⇒z=53(±3)=±5
So, x=±3,y=∓2,z=±5