x2+y2−3=3xy
x2+y2−3xy=3
2x2−6+y2=02x2+y2=6 .......(i)
Put y=vx
x2+v2x2−3vx2=3 ........(ii)
2x2+v2x2=6 .........(iii)
Dividing (ii) by (iii), we have
x2+v2x2−3vx22x2+v2x2=36
⇒1+v2−3v2+v2=12
⇒2+2v2−6v=2+v2
⇒v2−6v=0
⇒v(v−6)=0
⇒v=0,6⇒y=0,6x
Substituting y in (i), we have
2x2+y2=6
(i) Put y=0
Therefore, 2x2=6
⇒x=±√3
Thus y=0
(ii) Put y=6x
Therefore, 2x2+(6x)2=6
⇒38x2=6
⇒x2=319
⇒x=±√319
Thus y=6(±√319)=±6√319