Solve the following equations:
x2y2+400=41xy,y2=5xy−4x2.
Let y2=5xy−4x2 ..........(i)
Given, x2y2+400=41xy
⇒x2y2−41xy+400=0⇒x2y2−16xy−25xy+400=0⇒xy(xy−16)−25(xy−6)=0⇒(xy−25)(xy−6)=0⇒xy=25,6⇒y=25x,16x
Substituting y in (i)
(1) y=25x
Therefore, (25x)2=5x(25x)−4x2
⇒625x2+4x2=125⇒4x4−125x2+625=0⇒4x4−100x2−25x2+625=0⇒4x2(x2−25)−25(x2−25)=0⇒(4x2−25)(x2−25)=0⇒x2=25,254⇒x=±5,±52
Thus y=25x
⇒y=±5,±10
(2) y=16x
Therefore, (16x)2=5x(16x)−4x2
⇒256x2+4x2=80⇒x4−20x2+64=0⇒x4−4x2−16x2+64=0⇒x2(x2−4)−16(x2−4)=0⇒(x2−16)(x2−4)=0⇒x2=4,16
⇒x=±2,±4
Thus y=16x
⇒y=±8,±4
So, the values of x are ±5,±52,±2,±4 and corresponding values of y are ±5,±10,±8,±4.