Solve the following equations:
(x2−y2)(x−y)=16xy,(x4−y4)(x2−y2)=640x2y2
Given equations are (x2−y2)(x−y)=16xy
⇒xy=(x2−y2)(x−y)16 ......(i)
and (x4−y4)(x2−y2)=640x2y2
⇒(x2+y2)(x2−y2)2=640x2y2
Substituting value of equation (i), in above equation, we get
(x2+y2)(x2−y2)2=640((x2−y2)(x−y)16)2⇒2(x2+y2)=5(x−y)2⇒2x2+2y2=5x2+5y2−10xy⇒x2+y2=10xy3⇒x2+y2−2xy=10xy3−2xy
⇒(x−y)2=4xy3 ......(ii)
From (i), we have
⇒(x+y)(x−y)2=16xy ........(iii)
Substituting (ii) in (iii), we get
(x+y)4xy3=16xy⇒xy(x+y)=12xy⇒xy(x+y)−12xy=0⇒xy(x+y−12)=0⇒xy=0⇒x=0,y=0
Also x+y−2=0
⇒y=12−x
Substituting y in (iii), we get
(x+12−x)(x−12+x)2=16x(12−x)⇒3(2x−12)2=4(12x−x2)⇒3(x−6)2=12x−x2⇒3x2+108−36x=12x−x2⇒4x2−48x+108=0⇒x2−12x+27=0⇒x2−3x−9x+27=0⇒(x−3)(x−9)=0⇒x=3,9⇒y=12−x⇒y=9,3
So, the values of x are 0,3,9 and corresponding values of y are 0,9,3.