x2+y2+xy=9
z2+x2+xz=4
y2+z2+yz=1
Subtracting (2) from (1) and factorizing, we get
(y−z)(x+y+z)=5
Similarly, (x−y)(x+y+z)=3
(z−x)(x+y+z)=−8
Again subtracting (5) from (4), we get
(2y−x−z)(x+y+z)=2
Similarly, (2x−y−2)(x+y+z)=11.
Now putting x+y+z=t, we get from (7) and (8),(3y−t)t=2 or y=t2+23t and (3x−t)t=11 or x=t2+113t.
Substituting these values of x and y in (1),(t2+112)9t2+(t2+22)9t2+(t2+11)(t2+2)9t2=9 or 3t4−42t2+147=0 ort4−14t2+49=0 or (t2−7)2=0.
∴(x+y+z)2=t2=7 or x+y+z=t=±√7.
Hence x=±7+113√(7)=±6√(7), and y=±7+23√(7)=±3√(7).
Then from (4), we get
(3√(7)−z)√7=5 or (−3√(7)−z)(−√7)=5.
∴z=−22√(7) or z=22√(7).
Hence the solution sets are:
x=6√(7),y=3√(7),z=2√(7) or x=−6√(7),y=−3√(7),z=−2√(7).