Solve the following equations:
x2+y2−z2=21,
3xz+3yz−2xy=18,
x+y−z=5.
Given equations are x2+y2−z2=21 ......(i),
3xz+3yz−2xy=18
⇒3z(x+y)−2xy=18 ........(ii)
and x+y−z=5
⇒x+y=z+5 ..........(iii)
⇒x2+y2+2xy=z2+25+10z⇒x2+y2−z2+2xy=25+10z⇒21+2xy=25+10z⇒2xy=4+10z .........(iv)
On susbstituting (iii) and (iv) in (ii), we have
3z(z+5)−(4+10z)=18⇒3z2+5z−22=0⇒3z2−6z+11z−22=0⇒3z(z−2)+11(z−2)=0⇒(3z+11)(z−2)=0⇒z=2,−113
Substituting z in (i) and (iii),
(1) z=2
x2+y2−4=21⇒x2+y2=25 ........(a)
x+y−2=5⇒x+y=7⇒y=7−x ...........(b)
Solving (a) and (b)
x2+49+x2−14x=252x2−14x+24=0x2−7x+12=0x2−4x−3x+12=0⇒(x−3)(x−4)=0x=3,4
WE have y=7−x
⇒y=4,3
(2) z=−113
Substituting in (i) and (iii), we get
x2+y2−1219=21⇒9x2+9y2=310 ..........(c)
x+y=5−113⇒3x+3y=4⇒y=4−3x3 ........(d)
Solving (c) and (d), we get
9x2+9(4−3x3)2=310⇒9x2+16+9x2−24x−310=0⇒18x2−24x−294=0⇒6x2−8x−98=0⇒x=8±√64−4(6)(−98)12=8±√241612⇒x=8±4√15112=2±√1513
We have y=4−3x3
⇒y=43−x⇒y=43−(2±√1513)⇒y=2∓√1513
So, the values of x are 3,4,2±√1513 values of y are 4,3,2∓√1513 and value sof z are 2,−113.