..........
⇒2(yz+zx−xy)=12a2 ......... (ii)
3x+y−2z=3a ...... (iii)
x2+y2+z2=21a2 ........ (iv)
Subtracting (iv)−(ii), gives
x2+y2+z2+2xy−2yz−2zx=9a2
⇒(z−x−y)2=9a2
⇒z−x−y=±3a ...... (v)
⇒2z−2x−2y=6a ......... (vi) or 2z−2x−2y=−6a...... (vii)
Adding (iii) and (vi), we get
x−y=9a ........ (vi)
Adding (iii) and (vii), we get
x−y=−3a
Adding (iii) and (v), we get
2x−z=6a
⇒z−2y=12a ............ (viii) From (vi)
⇒x2+(x−9a)2+(2x−6a)2=21a2 ...... From (i)
⇒x2+x2+81a2−18ax+4x2+36a2−24ax=21a2
⇒6x2−42ax+96a2=0
⇒x2−7ax+16a2=0 ..... (ix)
Adding (iii) and (v), we get
2x−z=0
z=2x
x2+(x+3a)2+(2x)2=21a2 ...... From (i)
6x2+6ax−12a2=0
x2+ax−2a2=0
(x+2a)(x−a)=0
x=a,y=4a,x=2a
x=−2a,y=a,z=−4a