x(2x+1)(x−2)(2x−3)=63{x(2x−3)}{(2x+1)(x−2)}=63(2x2−3x)(2x2−4x++x−2)=63(2x2−3x)(2x2−3x−2)=63
Put 2x2−3x=t
t(t−2)=63t2−2t−63=0t2−9t+7t−63=0t(t−9)+7(t−9)=0(t+7)(t−9)=0t=−7,92x2−3x=t2x2−3x=−72x2−3x+7=0.......(i)2x2−3x=92x2−3x−9=0........(ii)
Solving (i)
2x2−3x+7=0x=3±√9−4(2)(7)2(2)=3±√9−564x=3±√−474
Solving (ii)
2x2−3x−9=02x2−6x+3x−9=02x(x−3)+3(x−3)=0(2x+3)(x−3)=0x=−32,3
So the values of x are 3+√−474,3−√−474,−32 and 3