Given equation, x4−3x2−42x−40=0
Consider f(x)=x4−3x2−42x−40
f(−1)=(−1)4−3(−1)2−42(−1)−40
=1−3+42−40=0
By inspection we can easily see that f(−1)=0. Therefore, (x+1) is a factor of the given equation
∴f(x)=(x+1)⋅g(x)
⟹g(x)=f(x)(x+1)=x3−x2−2x−40
We need to find the root of g(x)=0
⟹x3−x2−2x−40=0
⟹x3+3x2−4x2+10x−12x−40=0
⟹x3−4x2+3x2−12x+10x−40=0
⟹x2(x−4)+3x(x−4)+10(x−4)=0
⟹(x−4)(x2+3x+10)=0
on Solving the above quadratic equation, we have
x=−b±√b2−4ac2a
=−3±√(−3)2−(4×1×10)2×1
=−3±√9−402
=−3±√31i2 [∵√−1=i]
∴ the roots of the given equation are x=−1,4,−3±√31i2