x4+89x2+1=3x3+3x
Replace x by 1x
1+89x2+x4x4=3+3x2x31+89x2+x4=x(3+3x2)1+89x2+x4=3x+3x3
On replacing x by 1x we saw thatthe equation becomes the same, so the roots of the equation are of the form
α,1α,β,1β
α+1α+β+1β=−ba=−−31=3α+1α+β+1β=3........(i)α.1α+α.β+α.1β+1α.β+1αβ+β.1β=ca=89αβ+1αβ+αβ+βα+2=89αβ+αβ+βα+1αβ=89−2=−109α(β+1β)+1α(β+1β)=−109(α+1α)(β+1β)=−109
Using (i)
(α+1α)(3−(α+1α))=−109
Let α+1α=t
t(3−t)=−10927t−9t2=−109t2−27t−10=09t2+3t−30t−10=03t(3t+1)−10(3t+1)=0(3t−10)(3t+1)=0t=103,−13
Now α+1α=t
For t=103
α+1α=103α2+1α=1033α2−10α+3=03α2−9α−α+3=03α(α−3)−1(α−3)=0(3α−1)(α−3)=0⇒α=13,3
For t=−13
α2+1α=−133α2+α+3=0α=−1±√1−4(3)(3)2(3)=−1±√−356
So the roots of the equation are 3,13,−1±√−356