x2−xy+y2=19x2+y2=19+xy......(i)x4+y2x2+y4=931
Using (a+b)2=a2+b2+2ab
(x2+y2)2−x2y2=931.....(ii)
Substituting (i) in (ii)
(19+xy)2−x2y2=931361+x2y2+38xy−x2y2=93138xy=570⇒xy=15y=15xx2+y2=19+xyx2+(15x)2=19+15x4+225=24x2x4−34x2+225=0x4−9x2−25x2+225=0x2(x2−9)−25(x2−9)=0(x2−25)(x2−9)=0x2=25,9x=√25√9x=±5,±3
Now, y=15x
x=±5⇒y=15±5=±3x±3⇒y=15±3=±5