Solve the following equations:
x4+y4=706,
x+y=8.
Let x+y=8 ......(i)
and x4+y4=706 .......(ii)
Using a2+b2=(a+b)2−2ab, equation (ii) becomes
(x2+y2)2−2x2y2=706⇒{(x+y)2−2xy}2−2x2y2=706⇒{(8)2−2xy}2−2x2y2=706
Put xy=t
(64−2t)2−2t2=706⇒4096+4t2−256t−2t2=706⇒2t2−256t+3390=0⇒t2−128t+1695=0⇒t2−113t−15t+1695=0⇒t(t−113)−15(t−113)=0⇒t=15,113⇒xy=15,113
(1) xy=15
Thus y=15x
Substituting y in (i), we get
x+15x=8⇒x2+15=8x⇒x2−8x+15=0⇒x2−5x−3x+15=0⇒x(x−5)−3(x−5)=0⇒(−3)(x−5)=0⇒x=3,5
For x=3
y=15x⇒y=153=5
For x=5
⇒y=155=3
(2) xy=113
⇒y=113x
Substituting y in (i), we get
x+113x=8⇒x2+113=8x⇒x2−8x+113=0⇒x=8±√64−4(1)(113)2=8±√−3882⇒x=8±2√−972=4±√−97
Therefore, y=113x
⇒y=1134±√−97
⇒y=1134±√−97×4∓√−974∓√−97⇒y=1134∓√−97113=4∓√−97