Solve the following equations:
x+√xy+y=65,
x2+xy+y2=2275.
x+√xy+y=65x+y=65−√xy ......(i)
x2+y2+xy=2275 .......(ii)
Using (a+b)2=a2+b2+2ab
(x+y)2−xy=2275 ........(iii)
Substituting (i) in (ii), we have
(65−√xy)2−xy=2275
⇒4225+xy−130√xy−xy=2275
⇒−130√xy=−1950
⇒√xy=15
⇒xy=225
⇒y=225x
⇒x2+(225x)2+x.225x=2275
⇒x2+50652x2=2050
⇒x4−2050x2+50652=0
⇒x4−25x2−2025x2+50625=0
⇒x2(x2−25)−2025(x2−25)=0
⇒(x2−2025)(x2−25)=0
⇒x2=25,2025
⇒x=±5,±45
Negative values of x are not satisfied by (i)
So, x=5,45
Now, y=225x
When x=5⇒y=2255=45
When x=45⇒y=22545=5
So, the values of x are 5,45 and corresponding values of y are 45,5.