Solve the following equations:
x+y=1072,
x13+y13=16.
x+y=1072x13+y13=16
Put x=u3,y=v3
u+v=16 .......(i)
u3+v3=1072
Using a3+b3=(a+b)(a2+b2−ab)
⇒(u+v)(u2+v2−uv)=1072
Using (i), we get
16(u2+v2−uv)=1072u2+v2−uv=67
Using (a+b)2=a2+b2+2ab
(u+v)2−3uv=67(16)2−3uv=67uv=63v=63u
From (i), we have
u+63u=16⇒u2+63=16u⇒u2−16u+63=0⇒u2−9u−7u+63=0⇒u(u−9)−7(u−9)=0⇒(u−7)(u−9)=0⇒u=7,9'
Now v=63u
u=7⇒v=637=9u=9⇒v=639=7
Now according to our assumption, we have
x=u3⇒x=73,93⇒x=343,729
and y=v3
⇒y=93,73⇒y=729,343