Solve the following equations:
x+y=7+√xy,
x2+y2=133−xy
x+y=7+√xy ......(i)
x2+y2=133−xyx2+y2+xy=133 .......(ii)
using (a+b)2=a2+b2+2ab
(x+y)2−xy=133 ........(iii)
Substituting (i) in (iii), we get
(7+√xy)2−xy=133⇒49+xy+14√xy−xy=133⇒14√xy=84⇒√xy=6⇒xy=36
⇒y=36x
Thus x2+(36x)2+x.36x=133 ....(iv)
From (ii), we have
x2+1296x2=97⇒x4−97x2+1296=0⇒x4−16x2−81x2+1296=0⇒x2(x2−16)−81(x2−16)=0⇒(x2−16)(x2−81)=0⇒x2=16,81⇒x=±4,±9
Negative values are not true for equation (i)
So, x=4,9
Now, y=36x
x=4⇒y=364=9x=9⇒y=369=4
So, the values of x are 4,9 and corresponding values of y are 9,4.