From first two equations, we get
xy+yz+zx=12[(x+y+z2)−(x2+y2+z2)]=12[144−50]=47
Also x3+y3−3xyz=(x+y+z)(x2+y2+z2−yz−zx−xy)
or 216−3xyz=12(50−47)
or xyz=60.
Hence the given equations reduce to
x+y+z=12,yz+zx+xy=47,xyz=60.
Now proceed as in problem 23.
Solution sets in this case are:
(3,4,5),(3,5,4),(4,3,5),(4,5,3),(5,3,4) and (5,4,3)
Alt. Here.S1=12. Also x2+y2+z2=50 gives
(x+y+z)2−2(xy+yz+zx)=50
or 144−2S2=50 ∴2S2=94 or S2=47
Again x3+y3+z3=216.
But x3+y3+z3−3xyz=(x+y+z)(x2+y2+z2−∑xy)
or 216−3S3=12(50−47)=36
or 216−36=3S3 ∴S3=60
∴S1=12,S2=47,S3=60
∴x,y,z arethe roots of cubic int:
t3−S1t2+S2t−S3=0
or t3−12t2+47t−60=0
By trial t=3 satisfies it.
∴ (t−3)(t2−9t+20)=4
or (t−3)(t−4)(t−5)=0
∴ t=3,4,5.
Hence the solution sets as above are
(3,4,5)(3,5,4) or (4,3,5)(4,5,3) or (5,3,4)(5,4,3)