The given system of equations can be written as
xy+xz=a2
yz+yz=b2
zx+zy=c2
Adding, xy+yz+zx=12(a2+b2+c2)
Then from (1) and (4), yz=12(b2+c2+a2)
Similarly, zx=c2+a2−b22 and xy=a2+b2−c22
Multiplying these,
(xyz)2=(b2+c2+a2)(c2+a2+b2)(a2+b2+c2)8
∴xyz=±√18(b2+c2−a2)(c2+a2−b2)(a2+b2−c2)
Now we easily get
x=±
⎷⎧⎪
⎪⎨⎪
⎪⎩(c2+a2−b2)(a2+b2−c2)2(b2+c2−a2)⎫⎪
⎪⎬⎪
⎪⎭
y=±
⎷⎧⎪
⎪⎨⎪
⎪⎩(a2+b2−c2)(b2+c2−a2)2(c2+a2−b2)⎫⎪
⎪⎬⎪
⎪⎭
z=±
⎷⎧⎪
⎪⎨⎪
⎪⎩(c2+a2−b2)(b2+c2−a2)2(a2+b2−c2)⎫⎪
⎪⎬⎪
⎪⎭.