We write the equations as
(x−a)+(y−b)+(z−c)=0
(xa−1)+(yb−1)+(zc−1)=0
or bc(x−a)+ca(y−b)+ab(z−c)=0
and ax+by+cz=bc+ca+ab,
From (1) and (2), by cross-multiplication, we have
x−aab−ca=y−bbc−ab=z−cca−bc=k, say
Then x=a+a(b−c)k,y=b+b(c−a)k,z=c+c(a−b)k.
Substituting in (3), we get
a2+b2+c2+[a2(b−c)+b2(c−a)+c2(a−b)]k=bc+ca+ab
or a2+b2+c2−(b−c)(c−a)(a−b)k=bc+ca+ab
(Factorizing the coefficient of k)
or k=a2+b2+c2−bc−ca−ab(b−c)(c−a)(a−b)
Hence solution is given by (4) where k is given by (5).