Solve the following equations:
xy+ab=2ax,x2y2+a2b2=2b2y2.
x2y2+a2b2=2b2y2 ......(i)
xy+ab=2ax ......(ii)
Squaring both sides, we get
(xy+ab)2=(2ax)2
⇒x2y2+a2b2+2abxy=4a2x2 .....(iii)
Substituting value of (i) in equation (iii),
2b2y2+2abxy−4a2x2=0⇒b2y2+abxy−2a2x2=0⇒b2y2−abxy+2abxy−2a2x2=0⇒by(by−ax)+2ax(by−ax)=0⇒(by+2ax)(by−ax)=0⇒by=−2ax,ax⇒y=−2axb,axb
Substituting y in (ii),
(a) y=−2axb
x(−2axb)+ab=2ax2ax2+2abx−ab2=0x=−2ab±√4a2b2−4(2a)(−ab2)2(2a)x=−2ab±√12ab4ax=−b±√3b2y=−2axb⇒y=a∓√3a
(b) y=axb
x(axb)+ab=2axax2−2abx+ab2=0ax2−abx−abx+ab2=0ax(x−b)−ab(x−b)=0(ax−ab)(x−b)=0x=b,by=a(b)b=a
So, the values of x are −b±√3b2,b and the corresponding values of y are a∓√3a,a.