Solve the following equations:
xy12+yx12=20,
x32+y32=65.
x√y+y√x=20x32+y32=65
Put x=u2,y=v2
u2v+v2u=20⇒uv(u+v)=20⇒u+v=20uv ........(i)
We haveu3+v3=65
Using a3+b3=(a+b)(a2+b2−ab)
⇒(u+v)(u2+v2−uv)=65
Substituting value of equation (i) in above equation, we get
20uv(u2+v2−uv)=65⇒20(u2+v2)=85uv⇒u2+v2=174uv
Using (a+b)2=a2+b2+2ab
⇒u2+v2+2uv=174uv+2uv⇒(u+v)2=254uv
Substituting (i) in above equation, we get
(20uv)2=254uv⇒u3v3=400×425=64⇒uv=4⇒v=4u
Substituting v in (i), we get
4(u+4u)=20⇒u2+4u=5⇒u2−5u+4=0⇒u2−4u−u+4=0⇒u(u−4)−1(u−4)=0⇒(u−4)(u−1)=0⇒u=1,4
Now, v=4u
u=1⇒v=41=4u=4⇒v=44=1∴v=4,1
According to our assumption, we have
x=u2⇒x=12,42⇒x=1,16
and y=v2
⇒y=42,12⇒y=16,1