Solve the following equations:
xy+x+y=23,
xz+x+z=41,
yz+y+z=27.
Given equations are xy+x+y=23
⇒x(y+1)=23−y
⇒x=23−yy+1 ........(i),
yz+y+z=27
⇒z(y+1)=27−z
⇒z=27−yy+1 ...........(ii)
and xz+x+z=41 .....(iii)
Substituting (i) and (ii), we get
(23−yy+1)(27−yy+1)+23−yy+1+27−zy+1=41⇒621+y2−50y(y+1)2+50−2yy+1=41⇒621+y2−50y+(50−2y)(y+1)(y+1)2=41⇒621+y2−50y+50y−50−2y2−2y=41y2+41+82y⇒42y2+84y−630=0⇒y2+2y−15=0⇒y2−3y+5y−15=0⇒y(y−3)+5(y−3)=0⇒(y+5)(y−3)=0⇒y=−5,3
Substituting y in (i), we get
⇒x=−7,5
Substituting y in (ii), we get
⇒z=−8,6