We rewrite the equations as
(y2−zx)+(z2−xy)=12
(x2−yz)+(z2−xy)=8
(x2−yz)+(y2−zx)=2
Adding (1),(2) and (3), we get
2(y2−zx)+2(z2−xy)+2(x2−yz)=22
or (y2−zx)+(z2−xy)+(x2−yz)=11
From (1) and (4),
x2−yz=−1
Similarly from (2) and (4),
y2−zx=3
and from (3) and (4),
z2−xy=9
Multiplying (5),(6),(7) by y,z,x respectively and adding, we get
−y+3z+9x=0 or 9x−y+3z=0
Again multiplying these equations by z,x and y and adding, we get
−z+3x+9y=0
or 3x+9y−z=0
Solving (8) and (9) by cross-multiplication, we get
x1−27=y9+9=z81+3
or x−26=y18=z84
or x−13=y9=z42=k,say
Substituting these values in (5), we get
169k2−378k2=−1
or 209k2=1 or k=±1√(209)
Hence x=±13√(209),y=±9√(209),z=±42√(209).