sin−1(1−x)−2sin−1x=π2 ....(1)
sin−1(1−x)=π2+2sin−1x
1−x=sin[π2+2sin−1x]
1−x=cos[2sin−1x]
1−x=1−2[sin(sin−1x)]2[∵cos(2x)=1−2sin2x]
1−x=1−2x2
2x2−x=0
x(2x−1)=0
x=0,x=12
Put x=0 in equation (1)
LHS=sin−11−2sin−10=π2=RHS
Put x=12 in equation (1)
LHS=sin−1(12)−2sin−1(12)=π6−2π6=−π6
LHS≠π2≠RHS
So, x=12 is not a solution.
∴x=0 is a solution to given equation.