Solve the following for x:sin−1(1−x)−2 sin−1x=π2
OR
Show that: 2sin−1(35)−tan−1(1731)=π4
sin−1(1−x)−2 sin−1x=π2⇒sin−1(1−x)=π2+2 sin−1x⇒(1−x)=sin(π2)+2sin−1x⇒(1−x)=cos(2sin−1x)⇒(1−x)=cos(cos−1(1−2x2))⇒1−x=1=2x2⇒2x2−x=0∴x=0,x=12
OR
2sin−1(35)−tan−1(1731)=π4L.H.S.,=cos−1(1−2×925)−tan−1(1731)=cos−1(725)−tan−1(1731)=tan−1(247)tan−1(1731)=tan−1(247)tan−1(1731)=tan−1(247−17311+247×1731)=tan−1(24×31−17×731×7+24×17)=tan−1(625625)=tan−11=π4=R.H.S.
Hence Proved