z2−(3−2i)z−(5i−5)=0z=(3−2i)±√9−4−12i+4(5i−5)2z=(3−2i)±√5−12i+20i−202z=(3−2i)±√−15+8i2z=(3−2i)±i√15−8i2let,√15−8i=x+iy15−8i=x2−x2−y2+2xyix2−y2=152xy=−8xy=−4y=−4xx2−16x2=15x4−15x2−16=0x4−16x2+x2−16=0(x2+1)(x2−16)=0x=4;y=−1√15−8i=4−i(3−2i)±i(4−i)2(3−2i)±(1−4i)2