wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following :
dydx+yx=y2x2

Open in App
Solution

We have,

dydx+yx=y2x2

This is a homogeneous differential equation then,

Put,

y=vx

dydx=v+xdvdx

Now,

dydx+vxx=v2x2x2

v+xdvdx+vxx=v2x2x2

v+xdvdx+v=v2

xdvdx+2v=v2

xdv+2vdx=v2dx

xdv=v2dx2vdx

xdv=(v22v)dx

dv(v22v)=dxx

dv(v22v+11)=dxx

dv(v1)212=dxx

Onintigratingandweget,

dv(v1)212=dxx1x2a2dx=12ln(xax+a)

12ln(v11v1+1)=lnx+C

12ln⎜ ⎜yx2yx⎟ ⎟=lnx+Cv=yx

12ln⎜ ⎜ ⎜y2xxyx⎟ ⎟ ⎟=lnx+C

12ln(y2xy)=lnx+C

ln(y2xy)12=lnx+C

lny2xlny=lnx+C

Hence, this is the answer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon