We have,
dydx+yx=y2x2
This is a homogeneous differential equation then,
Put,
y=vx
dydx=v+xdvdx
Now,
dydx+vxx=v2x2x2
v+xdvdx+vxx=v2x2x2
v+xdvdx+v=v2
xdvdx+2v=v2
xdv+2vdx=v2dx
xdv=v2dx−2vdx
xdv=(v2−2v)dx
dv(v2−2v)=dxx
dv(v2−2v+1−1)=dxx
dv(v−1)2−12=dxx
Onintigratingandweget,
∫dv(v−1)2−12=∫dxx∴∫1x2−a2dx=12ln(x−ax+a)
12ln(v−1−1v−1+1)=lnx+C
12ln⎛⎜ ⎜⎝yx−2yx⎞⎟ ⎟⎠=lnx+C∴v=yx
12ln⎛⎜ ⎜ ⎜⎝y−2xxyx⎞⎟ ⎟ ⎟⎠=lnx+C
12ln(y−2xy)=lnx+C
ln(y−2xy)12=lnx+C
ln√y−2x−lny=lnx+C
Hence, this is the answer.