2−x>02>xx∈(−∞,2) and x2+8x+15>0(x+5)(x+3)>0x∈(−∞,−5)∪(−3,∞)
Taking intersection, we get x∈(−∞,−5)∪(−3,2)
Taking log2 both side of equation
log(2−x)(x2+8x+15)<0log(x2+8x+15)log(2−x)<0
For x∈(1,2)log(2−x)<0
log(x2+8x+15)>0x2+8x+15>1x2+8x+14>0x∈(−∞,−4−√2)∪(−4+√2,∞)
Hence, x∈(1,2)
For x∈(−∞,−5)∪(−3,1)log(2−x)>0
log(x2+8x+15)<0x2+8x+15<1x2+8x+14<0x∈(−4−√2,−4+√2)
Hence, x∈(−4−√2,−5)∪(−3,−4+√2)
Taking union, we get x∈(−4−√2,−5)∪(−3,−4+√2)∪(1,2)