1(5−logax)+2(1+logax)<1
−1(logax−5)+2(logax+1)<1
−logax−1+2logax−10(logax+1)(logax−5)<1
(logax−11)(logax+1)(logax−5)<1
For a>1,(logax+1)(logax−5)<0
For xϵ(1a,a5)
and (logax+1)(logax−5)>0
for xϵ(−∞,1a)⋃(a5,∞)
For xϵ(−∞,1a)⋃(a5,∞),a>1
(logax−11)<loga2x−4logax−5
loga2x−5logax+6>0
(logax−2)(logax−3)>0
logaxϵ(−∞,2)⋃(3,∞)
xϵ(0,a2)⋃(a3,∞)
Hence
xϵ(0,1a)⋃(a5,∞)
For xϵ(1a,a5),a>1
(logax−1)>(logax+1)(logax−5)
logaxx−5logax+6<0
logaxϵ(2,3)
xϵ(a2,a3)
Hence, xϵ(a2,a3)
Taking union xϵ(0,1a)⋃(a2,a3)⋃(a5,∞)
For aϵ(0,1)(a=1k)
(−logkx−11)<1
(−logkx+1)(−logkx−5)
−(logkx+11)(logkx−1)(logkx+5)<1
For xϵ(1k5,k)
−(logkx+11)>(logkx−1)(logkx+5)
−(logkx+11)>logk2x+4logkx−5
logk2x+5logkx+6<0
(logkx+2)(logkx+3)<0
xϵ(1k3,1k2)
Hence, xϵ(1k3,1k2)
xϵ(a3,a2)
For xϵ(−∞,1k5)⋃(k,∞)
−(logkx+11)<(logkx−1)(logkx+5)
−(logkx+11)<logk2x+4logkx−5
logk2x+5logkx+6>0
(logkx+2)(logkx+3)>0
xϵ(−∞,1k3)⋃(1k2,∞)
Hence xϵ(−∞,1k5)⋃(k,∞)
xϵ(−∞,a5)⋃(a,∞)
For aϵ(0,1)
xϵ(a3,a2)⋃(−∞,a5)⋃(a,∞), where a is in fraction.