(10)−log(x−3)(x2−4x+3)≥1−log(x−3)(x2−4x+3)≥0log(x2−4x+3)log(x−3)≤0For,x>4log(x2−4x+3)≤0x2−4x+3≤1x2−4x+2≤0x∈[2−√2,2+√2]Hence,x∈ϕFor,x∈(3,4)log(x2−4x+3)≥0x2−4x+3≥1x2−4x+2≥0x∈(−∞,2−√2]∪[2+√2,∞)Hence,x∈[2+√2,4)Also
x2−4x+3>0(x−1)(X−3)>0x∈(−∞,1)∪(3,∞) and x−3>0x>3x∈(3,∞)
Taking intersection, we get x∈[2+√2,4)