We know that
x2−2.5x+1>0x2−2x−0.5x+1>0(x−2)(x−0.5)>0x∈(−∞,0.5)∪(2.∞)
Also 3xx2+1>0x>0x∈(0,∞)
Taking intersection, we get x∈(0,0.5)∪(2,∞)
3xx2+1=1⇒3x=x2+1⇒x2−3x+1=0
x=(3−√52,3+√52)
3xx2+1>1
For x∈(3−√52,3+√52)
For x∈(3−√52,0.5)∪(2,3+√52)
log(x2−2.5x+1)≥0x2−2.5x+1≥1x(x−2.5)≥0x∈(−∞,0]∪[2.5,∞)
Hence, x∈[2.5,3+√52)
For x∈(0,3−√52)∪(3+√52,∞)
log(x2−2.5x+1)≤0x2−2.5x+1≤1⇒x(x−2.5)≤0x∈[0,2.5]
Hence, x∈(0,3−√52)
Taking union, we get x∈(0,3−√52)∪[2.5,3+√52)