log(x+3x−3)4<2⎡⎢
⎢
⎢⎣log1/2(x−3)−log⎛⎝√22⎞⎠√x+3⎤⎥
⎥
⎥⎦
log(x+3x−3)4<2[−log2(x−3)+22log2(x+3)]
log(x+3x−3)4<2log2(x+3x−3)
2log(x+3x−3)2<2log2(x+3x−3)
log2log(x+3x−3)<log(x+3x−3)1(log2)
(log2)2log(x+3x−3)<[log(x+3x−3)]3
log(x+3x−3)[[log(x+3x−3)]2−(log2)2]>0
log(x+3x−3)[log(x+3x−3)+log2][log(x+3x−3)−log2]>0
log(x+3x−3)ϵ(−log2,0)⋃(log2,∞)
12<x+3x−3<12<x+3x−3<∞
x+3x−3>12x+3x−3<1
2(x+3)(x−3)>(x−3)2(x+3)(x−3)<(x−3)2
2x2−18>x2+9−6xx2−9<x2+9−6x
(x2+6x−27)>06x<18
(x+9)(x−3)>0x<3
xϵ(−∞,−9)⋃(3,∞)xϵ(−∞,3)
x+3(x−3)>2x+3(x−3)<∞(x+3)(x−3)>2(x−3)2(x+3)(x−3)<∞
x2−9>2x2+18−12xx+3
x2+27−12x<0xϵR−{3}
(x−9)(x−3)<0
xϵ(3,9)
Taking intersection we get
xϵ(−∞,−9)⋃(3,9)
Also, x+3(x−3)>0(x+3)(x−3)>0
xϵ(−∞,−3)⋃(3,∞)
and
()>0ó0
x>3x+3≥0
xϵ(3,∞)x≥−3
xϵ(−3,∞)
Taking intersection we get,
xϵ(3,9)