x−12+x>0(x−1)(x+2)>0x≠−2x∈(−∞,−2)∪(1,∞)
and x+63>0x>−6x∈(−6,∞)
Taking intersection, we get x∈(−6,−2)∪(1,∞)
For x∈(−6,−3),logx+63<0
Hence,
log2x−12+x<0x−12+x<1(x−1)(2+x)<(x+2)2x2+x−2<x2+4x+43x+6>0x>−2⇒x∈(−2,∞)
Hence, x∈ϕ
For x∈(−3,−2)∪(1,∞), logx+63>0
log2x−12+x>0x−12+x>1(x−1)(2+x)>(x+2)2x2+x−2>x2+4x+43x+6<0x<−2⇒x∈(−∞,−2)
Hence, x∈(−3,−2)
Taking union, we getx∈(−3,−2)