wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following inequality:
logx2+2x3|x+4||x|x1>0

Open in App
Solution

log(x2+2x3){(x+4)(x)(x1)}>0
For log(x2+2x3)
x2+2x3>0
(x+2)(x1)>0
xϵ(,3)(1,)
For log{(x+4)(x)(x1)}
(x+4)(x)(x1)>0
(x1)(|x+4||x|)>0
xϵ(1,)(x1)(x+4x)>0
(x1)(4)>0x>1xϵ(1,)
For xϵ[4,3)(x1)(x+4+x)
2(x1)(x+2)>0
xϵ(,2)(1,)
Hence xϵ[4,3)
For xϵ(,4)
(x1)(x4+x)>0
(x1)<0x<1
Hence, xϵ(,4)
Taking intersection we get xϵ(,3)(1,)
0<x2+2x3<1,{log(x2+2x3)<0}
That is, xϵ(51,3)(1,51)
For xϵ(51,3)
log(x2+2x3){(x+4)(x)(x1)}>0
(x+4+x)(x1)>1
2(x1)(x+2)>(x1)2
x2+4x5<0
(x+5)(x1)<0
xϵ(5,1)
Hence, xϵ(51,3)
For xϵ(1,51)
log(x2+2x3){(x+4)(x)(x1)}>0
(x+4)x(x1)<1
(x1)4<(x1)2
(x1)(x5)>0
xϵ(,1)(5,)
Hence xϵϕ
Taking intersection we get xϵ(51,3)
For xϵ(,51)(51,)
log(x2+2x3)>0
For xϵ(4,51)
x+4+x(x1)>1
2(x1)(x+2)>(x1)2
(x2+4x5)>0
xϵ(,5)(1,)
Hence, xϵϕ
For xϵ(,4)
(x+4)+x(x1)>1
4(x1)>(x1)2
(x1)(x+3)<0
xϵ(3,1)
Hence, xϵϕ
For xϵ(51,)
x+4x(x1)>1
4(x1)>(x1)2
(x1)(x5)<0
xϵ(1,5)
Hence xϵ(51,3)
Taking intersection we get xϵ(51,5)
Taking union we get xϵ(51,3)(51,5)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Simple Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon