log(x2+2x−3){(x+4)−(x)(x−1)}>0
For log(x2+2x−3)
x2+2x−3>0
(x+2)(x−1)>0
xϵ(−∞,−3)⋃(1,∞)
For log{(x+4)−(x)(x−1)}
(x+4)−(x)(x−1)>0
(x−1)(|x+4|−|x|)>0
xϵ(1,∞)(x−1)(x+4−x)>0
(x−1)(4)>0x>1xϵ(1,∞)
For xϵ[−4,−3)(x−1)(x+4+x)
2(x−1)(x+2)>0
xϵ(−∞,−2)⋃(1,∞)
Hence xϵ[−4,−3)
For xϵ(−∞,−4)
(x−1)(−x−4+x)>0
(x−1)<0x<1
Hence, xϵ(−∞,−4)
Taking intersection we get xϵ(−∞,−3)⋃(1,∞)
0<x2+2x−3<1,{log(x2+2x−3)<0}
That is, xϵ(−√5−1,−3)⋃(1,√5−1)
For xϵ(−√5−1,−3)
log(x2+2x−3){(x+4)−(x)(x−1)}>0
(x+4+x)(x−1)>1
2(x−1)(x+2)>(x−1)2
x2+4x−5<0
(x+5)(x−1)<0
xϵ(−5,1)
Hence, xϵ(−√5−1,−3)
For xϵ(1,√5−1)
log(x2+2x−3){(x+4)−(x)(x−1)}>0
(x+4)−x(x−1)<1
(x−1)4<(x−1)2
(x−1)(x−5)>0
xϵ(−∞,1)⋃(5,∞)
Hence xϵϕ
Taking intersection we get xϵ(−√5−1,−3)
For xϵ(−∞,−√5−1)⋃(√5−1,∞)
log(x2+2x−3)>0
For xϵ(−4,−√5−1)
x+4+x(x−1)>1
2(x−1)(x+2)>(x−1)2
(x2+4x−5)>0
xϵ(−∞,−5)⋃(1,∞)
Hence, xϵϕ
For xϵ(−∞,−4)
−(x+4)+x(x−1)>1
−4(x−1)>(x−1)2
(x−1)(x+3)<0
xϵ(−3,1)
Hence, xϵϕ
For xϵ(√5−1,∞)
x+4−x(x−1)>1
4(x−1)>(x−1)2
(x−1)(x−5)<0
xϵ(1,5)
Hence xϵ(√5−1,3)
Taking intersection we get xϵ(√5−1,5)
Taking union we get xϵ(−√5−1,−3)⋃(√5−1,5)