For logx+42x−6⇒ x+42x−6>0(x+4)(2x−6)>0x∈(−∞,−4)∪(3,∞)
For log(x−5)⇒ x−5>0x>5
For log(x−4.5)⇒ x−4.5>0x>4.5
Taking intersection, we get x∈(5,∞)
For x>5.5
logx+42x−6≤log(x−5)x+42x−6≤x−5x+4≤(x−5)(2x−6)x+4≤2x2−16x+302x2−17x+26≥0x∈(−∞,−2]∪[6.5,∞)Hence,x∈[6.5,∞)
For x∈(4.5,5.5)
logx+42x−6≥log(x−5)x+42x−6≥x−5x+4≥(x−5)(2x−6)x+4≥2x2−16x+302x2−17x+26≤0x∈[2,6.5]Hence,x∈(4.5,5.5)
Taking union, we get x∈(5,5.5)∪[6.5,∞)