wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following inequality:
52sinx6sinx1

Open in App
Solution

Let 6sinx10
sinx1/6
xϵ[2nπ+sin1(1/6),(2n+1)πsin1(1/6)]
For this condition,
52sinx(6sinx1)2
52sinx36sin2x12sinx+1
36sin2x10sinx40
36sin2x10sinx40
Let sinx=t
36t210t40
36t218t+8t40
18t(2t1)+4(2t1)0
(18t+4)(2t1)0
tϵ[418,12]
tϵ[29,12]
for t=sinx
sinxϵ[2/9,12]
So,
xϵ[2nπsin1(+2/9),2nπ+π/6]U
[(2n+1)ππ/6,(2n+1)π+sin1(2/9)]
Combining this and condition for
sinx1/6, we get
xϵ[2nπ+sin1(1/6),2nπ+π/6]U[(2n+1)ππ6,(2n+1)πsin1(1/6)]
Now, when sinx1/6
(52sinx)20
52sinx0
sinx5/2
xϵR
and as sinx1/6
xϵ[2nπ+sin1(1/6),(2n1)πsin1(1/6)]

1004652_889000_ans_01f67ef8e77b4629a407b731132f9205.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon