Let
6sinx−1≥0sinx≥1/6
xϵ[2nπ+sin−1(1/6),(2n+1)π−sin−1(1/6)]
For this condition,
→5−2sinx≥(6sinx−1)2
→5−2sinx≥36sin2x−12sinx+1
→36sin2x−10sinx−4≤0
→36sin2x−10sinx−4≤0
Let sinx=t
→36t2−10t−4≤0
→36t2−18t+8t−4≤0
→18t(2t−1)+4(2t−1)≤0
→(18t+4)(2t−1)≤0
tϵ[−418,12]
tϵ[−29,12]
for t=sinx
sinxϵ[−2/9,12]
So,
xϵ[2nπ−sin−1(+2/9),2nπ+π/6]U
[(2n+1)π−π/6,(2n+1)π+sin−1(2/9)]
Combining this and condition for
sinx≥1/6, we get
xϵ[2nπ+sin−1(1/6),2nπ+π/6]U[(2n+1)π−π6,(2n+1)π−sin−1(1/6)]
Now, when sinx≤1/6
→(√5−2sinx)2≥0
→5−2sinx≥0
→sinx≤5/2
xϵR
and as sinx≤1/6
xϵ[2nπ+sin−1(1/6),(2n−1)π−sin−1(1/6)]