√5+x−√−x−3<1+√(x+5)(−x−3) - Equation 1
For definition of square roots,
1. 5+x≥0⇒x≥−5 -Equation 2
2. −x−3≥0⇒x≤−3 - Equation 3
3. $(x+5)(-x-3)\ge 0\Rightarrow (x+5)(x+3)\le 0 -Equation 4
From Equation 4,
(5+x)+(−x−3)−2√(x+5)(−x−3)<1+(x+5)(−x−3)+2√(x+5)(−x−3)
⇒1+(x+5)(x+3)<4√(x+5)(−x−3)
⇒1+(x+5)2(x+3)2+2(x+5)(x+3)<16(x+5)(−x−3)
⇒[(x+5)(x+3)]2+18(x+5)(x+3)+1<0
⇒[(x+5)(x+3)]−−18±√3202]<0
⇒[x2+8x+15+9−√3202][x2+8x+15+9+√3202]
⇒[x2+8x+24−√3202][x2+8x+24+√3202] - Equation 5
For [x2+8x+24−√3202=f(x)
∀x∈R,ifD<0,a>0⇒ it is always positive implies that (x2+8x+24−√3202) is negative.
⇒(x2+8x+24−4√5)<0
⇒x−−8±√32+16√52<0
⇒(x+4+2√2+√5)((x+4−2√2+√5)<0 - Equation 6
In Figure 1, Range is x∈[−5,−3]