√xlog2√x≥2x>0
Squaring on both sides we get
xlog2√x≥4
For xϵ(0,1) For x>1
log2√x≤2log2logxlog2√x≥2log2(logx)
12log2logx≤2log2logxlogx2log2≥2log2(logx)(logx)2
(logx)≤4(log2)2(logx)(logx)(logx)(logx−2log2)(logx+2log2)≥0
(logx)3−(logx)(4log2)2≤0logxϵ[−log4,0]⋃[log4,∞]
(logx)(logx−2log2)(logx+2log2)≤0
logxϵ(−∞,−log4]⋃[0,log4]xϵ[14,1]⋃[4,∞)
xϵ[0,14)⋃[1,4]
Hence xϵ[0,14]xϵ[4,∞)
Taking union we get xϵ(0,14]⋃[4,∞)