x2x+1≥14⟹x2x+1−14≥0⟹4x−2x−18x+4≥0⟹2x−18x+4≥0
Hence, either both numerator and denominator should be positive or both should be negative.
⟹{{2x−1≥0}∩{8x+4≥0}}∪{{2x−1≤0}∩{8x+4≤0}}
⟹{x≥12}∩{x<−12} (as x=−0.5 gives undefined value)
⟹x∈(−∞,−12)∪[12,∞)
Also,
6x4x−1<12⟹6x4x−1−12<0⟹12x−4x+18x−2<0⟹8x+18x−2<0
Hence, numerator and denominator should be of opposite sign.
⟹{{8x+1<0}∩{8x−2>0}}∪{{8x+1>0}∩{8x−2<0}}
⟹{ϕ}∪{{x>−18}∩{x<14}}
⟹x∈(−18,14)
Now, the required solution is x∈{(−∞,−12)∪[12,∞)}∩(−18,14)
⟹x∈[12,14)