Solve the following pair of equations by reducing them to a pair of linear equations:
Given:
1(3x+y)+1(3x−y)=34,12(3x+y)+12(3x−y)=−18
let13x+y=aand13x−y=b
Thena+b=34⇒4a+4b=3........eq1
a2−b2=−18
a−b2=−18
a−b=−28⇒a−b=−14
4a−4b=−1..............eq2
Adding
eq1 and eq2 we get
8a=2
a=28⇒14
Substituting
the value of a in eq1 we get
4×14+4b=3
4b=2
b=24⇒12
Then 13x+y=14
3x+y=4................eq3
13x−y=12
3x−y=2...............eq4
Adding
eq3 and eq4 we get
6x=6
x=1
Substituting x=1 in eq3 we get
3×1+y=4
y=1
Thus x=1 and y=1