First equation:
5x−1+1y−2=2
or, 5(y−2)+x−1(x−1)(y−2)=2
5y−10+x−1xy−2x−y+2=2
= x+5y−11=2xy−4x−2y+4
or ,x+5y−11+4x+2y−4=2xy
or, 5x+7y−15=2xy
second equation:
6x−1−3y−2=1
6y−12−3x+3xy−2x−y+2=1
= 6y−3x−9=xy−2x−y+2
6y−3x−9+2x+y−2=xy
or, 7y−x−11=xy
Multiply the second equation by 2 and subtract first equation from resultant
14y−2x−22=2xy
7y+5x−15=2xy
------------------------------
7y−7x−7=0
y−x−1=0
y=x+1
Substituting the value of x in first equation, we get;
5x+7y−15=2xy
Or, 5x+7x+7−15−2x(x+1)
Or, 12x−8=2x2+2x
Or, 10x−8=2x2
Or, x2=5x−4
Similarly, substituting the value of y in second equation, we get;
7y−x−11=xy
Or, 7x+7−x−11=x2+1
Or, 6x−5=x2
From above two equations, it is clear
5x−4=6x−5
Or, 5x+1=6x
Or, x=1
Hence, y=x+1=2
Hence, x=1 and y=2