Given equations are,
x+2y=−2,⇒x+2y+2=0……(i)
Comparing this equation with a1x+b1y+c1=0, we get
a1=1,b1=2,c1=2
x−y=4,⇒x−y−4=0……(ii)
Comparing this equation with a2x+b2y+c2=0, we get
a2=1,b2=−1,c2=−4
From cross multiplication method, we have,
x=b1c2−b2c1a1b2−a2b1 , y=c1a2−c2a1a1b2−a2b1
x=[(2)(−4)−(−1)(2)](1)(−1)−(1)(2)
x=[(−8)−(2)](−1)−(2)
⇒x=2
y=c1a2−c2a1a1b2−a2b1
y=[(2)(1)−(−4)(1)](1)(−1)−(1)(2)
y=[(2)−(−4)](−1)−(2)
⇒y=−2
∴ x=2 , y=−2