Solve the following pair of linear equations by the elimination method and the substitution method :
(i) x+y=5 and 2x−3y=4
(ii) 3x+4y=10 and 2x−2y=2
(iii) 3x−5y−4=0 and 9x=2y+7
(iv) x2+2y3=−1 and x−y3=3
(i) x+y=5 ...(i)
2x−3y=4 ...(ii) (elimination method)
Multiply eqn (i) by 2
2x+2y=10
2x−3y=4
−+−
____________
5y=6
⇒y=6/5
Substitute y=6/5in eqn (i)
x+ y=5
x+6/5=5
⇒x=5×5/5−6/5
=19/5
Substitution method
x+y=5 ....(i)
2x−3y=4 ....(ii)
y=5−x ...(iii)
Putting eqn. (3) in (2)
2x−3(5−x)=4
2x−15+3x=4
x=19/5
y=5×5/5−19/5
y=6/5
(ii)
Elimination method
3x+4y=10 ...(i)
2x−2y=2 ...(ii)
Multiply eqn (2) by 2
4x−4y=4
3x+4y=10
____________
7x=14
x=2
2×2−2y=2
⇒4−2=2y
y=1
Substitution method
3x+4y=10 ...(i)
2x−2y=2⇒x−y=1
x−1=y ...(ii)
Putting eqn (ii) in (i)
3x+4(x−1)=10
3x+4x−4=10
_________________
7x=14
x=2
y=x−1
y=2−1
⇒y=1
(iii) 3x−5y=4 ...(i)
9x−2y=7 ...(ii) (elimination method)
Multiply eqn (i) by 3
(ii)-(i)×3
9x−2y=7
9x−15y=12
_____________
13y=−5
⇒y=−5/13
3x−5(−5/13)=4
⇒3x=4−25/13
3x=(52−25)/13
x=27/(13×3)
⇒x=9/13
Substitution method
3x−5y=4 ...(i)
9x−2y=7
⇒9x−7=2y
(9x−7)/2=y
3x−5y=4
⇒3x−5(9x−7)/2=4
⇒3x−45/2x+35/2=4
⇒6x2−452x=4−352
⇒−39x2=8−352
x=2739
⇒x=913
Putting x=913 in 3x−5y=4
3×913−5y=4
2713−5y=4
⇒2713−4=5y
⇒27−5213=5y
−2513=5y
⇒y=−513
(iv)Elimination method
x2+2y3=−1
3x+4y6=−1
⇒3x+4y=−6 ...(i)
x−y3=3
⇒3x−y=9 ...(ii)
(i)−(ii)
3x+4y=−6
3x−y=−9
−+−
______________
5y=−15
⇒y=−3
Putting y=−3 in eqn (i)
3x−12=−6
⇒3x=−6+12
⇒3x=6
⇒x=2
Substitution method
3x+4y=−6 ...(i)
3x−y=9 ...(ii)
3x−9=y ....(iii)
Putting enq (iii) in (i)
3x+4(3x−9)=−6
⇒3x+12x−36=−6
⇒15x=−6+36
⇒15x=30
⇒x=2
Putting x=2 in eq (iii)
6−9=y
⇒y=−3