Solve the following pair of simultaneous equations:3√2x−5√3y+√5=0 and 2√3x+7√2y−2√5=0
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Solve the quadratic equations
(1) x2 + 15x + 50 = 0
(2) a2 − 5a + 6 = 0
(3) y2 = y + 2
(4) 6 − p2 = p
(5) 30 = b2 − b
(6) 2x2 = 5x − 12 = 0
(7) 6y2 + y − 15 = 0
(8) 6a2 + a = 5
(9) 13m = 6(m2 + 1)
(10) 0.2t2 − 0.04t = 0.03