The correct option is
A x=2427,y=3037The equation x2−y3=2 can be solved as:
x2−y3=2⇒3x−2y6=2⇒3x−2y=12.........(1)
The equation x5+y3=15 can be solved as:
x5+y3=15⇒3x+5y15=15⇒3x+5y=225.........(2)
Subtract Equation 2 from equation 1 to eliminate x, because the coefficients of x are the same. So, we get
(3x−3x)+(−2y−5y)=12−225
i.e. −7y=−213
i.e. y=2137=3037
Substituting this value of y in the equation 1, we get
3x−2(2137)=12⇒3x−4267=12⇒21x−426=84⇒21x=510⇒x=51021=1707=2427
Hence, the solution of the equations is x=2427,y=3037.