Given equations are 3x2−5y3=−2 and x3+y2=132
Lets take 3x2−5y3=−2
⇒9x−10y6=−2
⇒9x−10y=−12 ---(1)
Now, lets take, x3+y2=132
⇒2x+3y6=132
⇒2x+3y=132×6
⇒2x+3y=39 ---(2)
From (1)
9x−10y=−12
⇒9x=10y−12
⇒x=10y−129
Substitute x=10y−129 in 2x+3y=39
⇒2(10y−129)+3y=39
⇒20y−24+27y=351
47y=375
⇒y=37547
Now, x=10y−129
=10(37547)−129
=3750−56447×9
=318647×9
⇒x=35447
Therefore, x=35447 and y=37547