The set of equation is given as,
5x−1+1y−2=2
5(y−2)+1(x−1)=2(x−1)(y−2)
5y−10+x−1=2(xy−2x−y+2)
5y+x−11=2xy−4x−2y+4
5y+x−11+4x+2y−4−2xy=0
5x+7y−2xy=15 (1)
And,
6x−1−3y−2=1
6(y−2)−3(x−1)=1(x−1)(y−2)
6y−12−3x+3=xy−2x−y+2
6y−3x−9−xy+2x+y−2=0
−x+7y−xy−11=0
x−7y+xy+11=0
x−7y+xy=−11 (2)
Adding equation (1) and equation(2),
6x−xy=4
x(6−y)=4
x=46−y
Substituting the value of x in equation (1),
5(46−y)+7y−2y(46−y)=15
206−y+7y−8y6−y=15
20+7y(6−y)−8y=15(6−y)
20+42y−7y2−8y=90−15y
7y2−49y+70=0
y2−7y+10=0
y2−5y−2y+10=0
y(y−5)−2(y−5)=0
(y−2)(y−5)=0
y=2,5
At y=2, the equation is undefined, so the only value of y is 5.
Now, substitute the value of y in x=46−y.
x=46−5
x=41
x=4
Therefore, the values are x=4 and y=5.