The correct option is
C x=7,y=−1Given,
x+14=23(1−2y) ⇒3(x+1)=8(1−2y)
⇒3x+3=8−16y
⇒3x+16y=5 ....(1)
and 2+5y3=x7−2
⇒7(2+5y)=3(x−14)
⇒14+35y=3x−42
⇒3x−35y=56 ....(2)
Subtract equations (1) and (2), we get
51y=−51
⇒y=−1
Put this value in equation (1), we get
3x+16(−1)=5
⇒3x−16=5
⇒x=7
Therefore, the solution is x=7,y=−1.